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ON THE USE OF APPROXIMATE ANALnICAL SOLUTIONS 

IN SOLVING OPTIMUM TRAJECTORY PROBLEMS 

By Donald J. Jezewski 
Manned Spacecraft Center 

SUMMARY 

A method is presented for obtaining numerical solutions of nonlinear, 
optimum trajectory problems by using an approximate analytical solution in a 
convergence process. Convergence to specified terminal conditions is based on 
an analytic solution representing- a reasonable approximation to the nonlinear 
system of equations. 

A numerical example of three-dimensional, time-optimal trajectory solutions 
in vacuum with a constant thrust is used to illustrate the techniqij.e, 
tational force varying as the inverse square of the radius is considered. "he 
approximate analytic solution is obtained from a system of quasi-optimum tran- 
scendental equations. This analytic solution is used to obtain the initial and 
succeeding approximations to the initial values of the Lagrange multipliers. 
Generally, only a few iterations are required to obtain solutions which satisfy 

A gra.ri- 

specified boundary conditions. 

INTRODUCTION 

The requirement for solutions of nonlinear, optimum trajectory problems 
has steadily increased in recent years. The nonlinear differential equations 
are difficult to solve because of the deficiency of a process which would con- 
verge rapidly to the specified boundary conditions. The first order perturba- 
tion techniques used in convergence processes n0rmaU.y work well in the vicinity 
of the solution where the linearity assumption is valid, but they are usually 
unpredictable when large errors are present. 

The present paper deals with a technique which uses an approximate 
analytical solution in a convergence process for the corresponding nonlinear 
system of equations (refs. 1 and 2). 
solution curves of both the approximate and nonlinear equations are similar so 
that an identical change in the initial values of the Iagrange multipliers in 
each will produce approximately the same change in the terminal boundary con- 
ditions. These terminal boundary errors can be nullified by generating correc- 
tions to the initial values of Lagrange multipliers from the analytic solution. 

The basis for convergence is that the 



SYMBOLS 

lr, lG 7 $) 
un i t  vectors i n  r, e, and cp directions, respectively 

azimuth angle measured from le’ deg 
AZ 

B” terminal boundary vector 

c1, c2> ‘ 9  c6 i n i t i a l  values of Lagrange multipliers 

F analytic solution 

f l , f2?  * * * ~ ~ 6  general nonlinear functions 

H 

h a l t i tude,  f t  

I specific impulse, sec 

function defined by equation (4) 

SP 

k 

m 

r 

T 

v 

wO 

log ica l  control switch 

mass of vehicle, slugs 

radius t o  vehicle from center of a t t rac t ing  body, f t  

thrust ,  l b  

time, sec 

and 1 directions,  components of t o t a l  veloci ty  i n  lv, lr, 
respectively, f t / sec  

t o t a l  velocity, f t / sec  

9 

i n i t i a l  weight of vehicle, l b  

x, y, z i n e r t i a l  reference frame, f t  

X s t a t e  vector 

a’ control vector 

+ 

function defined by equation (AlO) 

f’unction defined by equation (Al2) 

px 

PY 
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Y 

e 

Su-scripts: 

091 

C 

I 

R 

Superscripts: 

+ 
h 

T 

Operators: 

(7 

fl ight-path angle, deg 

l a t i t ude  angle, deg 

Lagrange multipliers 

gravi ta t ional  constant, f t  /sec 

longitude angle, deg 

thrus t  pi tch angle measured from loca l  horizontal plane, deg 

thrus t  yaw angle measured from 1 deg 

3 2  

CP' 

i n i t i a l  and f i n a l  values of s t a t e  and control variables 

referring t o  a corrected solution 

referr ing t o  an integrated solution 

reference solution 

vector quantity 

approximate value of variables 

transpose matrix 

time different ia t ion 

ANALYSIS 

Statement of Problem 

Consider a system of f i rs t -order  d i f fe ren t ia l  equations of the  form 

rr' (tO)given t < t s t l  0 -  

3 



+ where and a’ a re  respectively the s t a t e  and control vectors.  Certain 
terminal boundary conditions on the s t a t e  vector a re  desired of the form 

q;(tl)’tl] = 0 

The problem is 

from i t s  given 

equation ( 2 ) .  

t o  determine the control vector 

i n i t i a l  values z(to) 
a‘ (t) which forces the s t a t e  

t o  the  boundary conditions defined by 

I n  optimization problems, the control vector i s  obtained from an optimality 
condition given by 

a H / a a  = 0 ( 3 )  

where 

The superscript T re fers  t o  the transpose matrix. The A’s  a re  Lagrange 
multipliers governed by the  d i f f e r e n t i a l  equation 

This system of nonlinear equation (equations (1) t o  ( 3 ) )  has a solut ion x” (t) 
f o r  any i n i t i a l  values of the Lagrange mult ipl iers  x‘ (to). The i n i t i a l  control 

vector i s  obtained from equation (3) by the  choice of the mult ipl iers  h’ (to). 
Thus, the problem i s  reduced t o  one of determining the i n i t i a l  vector h” P o ) *  

Approximate Solution 

Consider an approximate analyt ic  solut ion of t he  described system of 
nonlinear equations such t h a t  the  solut ion evaluated a t  the terminal boundary 
conditions i s  

$ = $(to) 

x + = x’(tl) 
1 

x + = ?(to) 
0 
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where the  circumflex over the variable indicates an approximate solution and 
the subscript R re fe rs  t o  a reference value. This solution can generally be 
derived by applying some simplifying assumptions t o  the  nonlinear equations. 

The i n i t i a l  values of the Lagrange multiplier from the analytic solution $ 
represent a first approximation t o  the Lagrange multipliers of the nonlinear 
system of equations. 
practice the equations are usually transcendental, and i t e r a t ive  techniques must 
be applied. 

Ideally, they can be solved expl ic i t ly  although i n  

I t e r a t ive  Technique 

Figure 1 i s  a log ica l  flow chart of the i t e r a t i v e  technique used i n  the  
convergence process. A switch k governs the various phases of the solution. 

NASA-S-65-2920 

Start 

I I F . F L  - - B Terminal boundary vector 
B I Resulting integrated vector 
X Lagrange multiplier 

A R Reference Lagrange multiplier 
Tc Corrected Lagrange multiplier 

- 
U 

Figure 1. -The  use of an analytic solution in  a convergence technique 

With the desired terminal boundary conditions and the  switch k equal t o  

0, the analyt ic  solution i s  solved f o r  t he  i n i t i a l  values of the Lagrange 
multipliers $ denoted as the reference solution. If the  nonlinear system 

of equations i s  integrated t o  a terminal cutoff using the i n i t i a l  yalues z0 
and G, the  resul t ing terminal vector 

boundary conditions. 

of the  approximate solution. Replacing the  desired boundary conditions by those 
obtained from the integrated solution z= %, the  analytic solution i s  resolved 

h 

h 

should resemble the  desired terminal 

The error  i n  these conditions i s  indicative of the accuracy 

5 



h 

f o r  the  i n i t i a l  vector 2. The switch k i s  s e t  equal t o  +1. I n  the analyt ic  
solution, a change i n  the  i n i t i a l  vector of 

has produced a change i n  the  terminal conditions of 

Since the analyt ic  solution i s  an approximation t o  the nonlinear system of 
equations, it i s  assumed that  t he  negative of t h i s  correction should produce an 
approximate change i n  the  terminal boundary conditions of the integrated solu- 
t ion.  
the nonlinear system of equations i s  

Therefore, the corrected i n i t i a l  value of the  Lagrange mult ipl iers  f o r  

h n 

The switch k 
procedure i s  repeated with one exception. 

vector 

t ion  h” and the previous integrated solution 2 .  This correction i s  given 

f o r  the next and a l l  future  passes i s  s e t  equal t o  -1. The 
The correction t o  the reference 

n 

i s  obtained by subtracting the  mult ipl ier  from the analyt ic  solu- 
n 

C by 
n A 

& = h”- ZC (10) 

The solution i s  continued i n  t h i s  manner u n t i l  the  terminal boundary conditions 
approach the desired conditions within some a rb i t r a ry  tolerance. 
Gibson (refs .  3 and 4) have used a similar technique i n  solving circumlunar 
t ra jec tor ies  using a matched conic as the  ana ly t ic  solution. 

Bat t in  and 

DISCUSSION OF RESULTS 

The example problem t h a t  i s  used t o  i l l u s t r a t e  t he  solution i s  a time- 
optimum desoent from lunar o rb i t .  
examples which were solved. 
numerical problem and the  r e su l t s  of the  derivation of t h e  analyt ic  solution. 

The problem is typ ica l  of a number of 
Refer t o  appendix A f o r  a descr ipt ion.of  t he  

An IBM 7040 electronic  data processing machine w a s  used f o r  the  computa- 
t ions.  The solution time varied with the  individual problem, depending mainly 
on the number of i t e ra t ions  required. 
sented, each i t e r a t ion  required approximately 6 seconds. 

For the  longitude-free solution pre- 
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‘,The i te ra t ion  data  and terminal boundary conditions are l i s t e d  i n  table I 

for a time-optimum descent from a lunar orbi t  t o  an a l t i t ude  of 7000 f ee t .  
i n i t i a l  multipliers - those l i s t e d  i n  the first i t e r a t ion  - w e r e  obtained by 
evaluating equations (Al3) t o  (A18) of appendix A from resu l t s  obtained by the 
analytic, quasi-optimum solution. The equations given i n  appendix B were inte- 
grated forward using these i n i t i a l  conditions. The independent variable, tinze, 
was chosen as a stopping condition for  the integration, since a value of th i s  
quantity i s  obtained from the analytic soiution. 
the  terminal time was corrected i n  the same manner as the i n i t i a l  values of the 
Lagrange multipliers.  Listed below the.mult ipl iers  i n  tab le  I a re  the terminal 
conditions on the boundary vector. 
terminal boundary conditions shows good agreement, w i t h  the la rges t  apparent 
error being i n  a l t i tude .  (This e r ror  i s  misleading, for the  problem i s  actual ly  
solved i n  terms of the  magnitude of the  radi is  vector and not the a l t i t ude  as 
the data imply. 
i terat ion.)  
tion, which required only 5 or 6 seconds to  compute, reduced the  errors i n  the  
terminal boundary vector and the i n i t i a l  values of the Lagrange multipliers by 
approximately 1 magnitude. 
l a s t  i t e r a t ion  indicates the excellent approximation of the analytic solution 
and the  acceptabili ty of the convergence technique. 
t h i s  problem was l e s s  than 30 seconds. 

The 

For each subsequent i t e ra t ion ,  

A comparison of these values w i t h  the  desired 

The error  i n  t h i s  variable i s  less than 1 percent for t h i s  
The solution can be observed t o  converge very rapidly; each itera- 

A comparison of the multipliers i n  the f i rs t  and 

Total solution time f o r  

7 
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TABLE I.- TIME OPTIMUM DESCENT FROM LUNAR ORBIT 

50 000 

A1 . . . . . .  
A2*l0 . . . .  4 

-1.5321 -17 93 

A *lob  . . . .  3 
A4 . . . . . .  
A *lo1 . . . .  5 
~ ~ ‘ 1 0  1 . . . .  
v ft/sec . . 1’ 

rl, deg . . . .  

hl’ 
el, deg . . . .  
cpl, deg . . . .  

AZ1, deg . . .  
ft . . . .  

tl, sec . . . .  

(a) I terat ions 

1 

0.0 

-17 16130 

11.65346 

1.0 

-1 e219591 

-1.174105 

678 9 5133 

-86.16649 

-108.6837 

-71 477.5 

- -366338 
-28.02573 

326.0405 

2 

0.0 

-22 23967 

io. 65851 

1.0 

- .880386 
-1.153440 

89 3276 

- 7.18572 
- 87.3814 
5411.5 

- .346616 
-28.03312 

327.6104 

3 

0.0 

-22.73874 

- e26852 
1 .o 

- 943033 
-1 e173056 

99 9 7368 

.26271 

- 86.9300 
5062.5 

- .351411 
-28.03926 

327.4008 

(b) Boundary condi t ims 
r - 
LT/Wo = 0.4172; I = 314 sec] 

SP 

0.0 

-22 73913 

- .17464 
1.0 

- 0943845 
-1 ~73146 

100.0205 

00499 

- 86 9981. 
5000.4 

- 351574 
-28.03928 

327 3864 

5 ooo I -0.3516 I Free I 

L 
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CONCLUDINC; REMARKS 

A technique has been presented for obtaining solutions of optimum trajec- 
tory problems by using a31 approximate analytic solution in a convergence process. 
Convergence is based on the analytic solution representing a reasonable approxi- 
mation to the nonlinear equations. A numerical example of time-optimum, 
constant-thrust trajectory solution in three dimensions has been used to illus- 
trate the technique. The analytic equations were obtained from a quasi-optimum 
solution in which the initial values of Lagrange multipliers were an excellent 
approximation. 
the exact solution. 

Generally, only a few iterations were required to converge to 

Numerical results for a longitude-free solution are presented for a descent 
from lunar orbit. 
mately 30 seconds for this case. 

Solution time on an I B M  7040 digital computer was approxi- 

Manned Spacecraft Center 
National Aeronautics and Space Administration 

Houston, Texas, April 5, 1963 
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APPENDIX A 

DERIVATION OF APPROXIMATE L A G W E  MULTIPLIERS 

The mathematical model employed i s  t h a t  of a mass p r t i c l e  with three  
degrees of freedom referred t o  a s e t  of ro ta t ing  coordinates. The axis system 
and the  associated notation a r e  i l l u s t r a t e d  i n  f igure 2. 
e n t i a l  equations fo r  t h i s  model and t h e i r  associated Ner-Lagrange equations 
a re  given i n  appendix B. 
mass flow ra te .  No aerodynamic forces a r e  considered. The angles x and Y 
a re  control variables and may be chosen a r b i t r a r i l y .  The f i n a l  time tl w a s  
selected t o  be minimized since, under the  abwe assumptions, t h i s  w i l l  y ie ld  a 
minimum fue l  consumption. 

The nonlinear d i f fe r -  

I The vehicle i s  assumed t o  have a constant t h rus t  and 

NASA- S -65-2921 
If ,  i n  the  equations of motion, 

the  nonlinear terms a r e  replaced by 
power se r i e s  i n  time and the  calculus 
of var ia t ion  is  applied t o  t h i s  l i n -  
earized s e t  of equations, the following 
optimality conditions r e su l t  ( r e f .  2) . 

, 
i 

l a  lm \pr t an  x = A /A 5 4  

s i n  Y = h6/h4 (A21 

\ I ’  where Y has been assumed t o  be smal l .  \v The mult ipl iers  a r e  of the rorm 
X 

1* ’* 
Figure 2. - Coordinate system and angle definition 

A 1 = c1 

A 2 = c2 

A = c  3 3  

A 4  =.c4 - C l t  

A = c - C 2 t  5 . 5  

where C1 t o  C6 a r e  constants. If the terminal boundary condition on the  

longitude i s  allowed t o  be free,  t he  d t i p l i e r  Al i s  0. This r e su l t  a l so  
f a c i l i t a t e s  integrating the  l inear ized  equations of motion. 

I 
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Evaluating equations ( A l )  and (A2) a t  the i n i t i a l  and f i n a l  time and 

making use of equations (A3) t o  (A8) ,  the following relationships among the 
constants C w i l l  resul t :  

c51c4 

'6/'4 

C3lC4 

Using these relationships, the 

= tan xo 

= Px = ( tan x0 - t an  x1)/tl 

= s i n  Yo 

= j+, = ( s i n  Y - s i n  yl)/tl 

Lagrange m l t i p l i e r s  take the form 

A,.= 0 

A 2  - px 

A3 = Py 

A4 = 1 

0 

- 

A5 = t an  xo - P x t  

A6 = s i n  Y 0 - PYt 

where the  constant 

Euler-Lagrange equations a r e  homogenous in  the multipliers.  
C4 has been a rb i t r a r i l y  s e t  equal t o  uni ty  since the  

From the  solution of the analytic equations i n  reference 2, the  i n i t i a l  
and f i n a l  values of the controls x and Y along w i t h  the value of the  f i n a l  
time tl a re  obtained. With these results, equations (Al3) t o  (A18) a re  

evaluated a t  the  i n i t i a l  time t o  obtain a f i rs t  approximtion t o  the i n i t i a l  
values of the  Lagrange multipliers f o r  the nonlinear system of equations. 

A r e s u l t  which i s  immediately apparent from equations (Al3) t o  ( U 8 )  i s  

and t A knowledge 

Fkcept f o r  cases i n  which the  multi- 

t ha t  a reasonably good approximation t o  the multipliers can be obtained by 
simply guessing f ive  new parameters: 
of t h i s  s e t  of variables fo r  a particular problem would certainly be more 
extensive than the  s e t  of multipliers.  
p l i e r s  a r e  extremely sensit ive t o  the terminal conditions, as i n  a deceleration 
problem, t h i s  method should prove f ru i t fu l .  

1' x0, X1, Yo, Yl, 

11 



APPENDUC B 

CONSTRAINT AND EULEB-LAGRANGE EQUATIONS 

The mathematical model is a mass prticle with three degrees of freedom 
referred to a set of rotating coordinates. 
notation are illustrated in figure 2. 
of motion are: 

The axis system and the associated 
In spherical coordinates, the equations 

(B1) 
.. 92 2 
r - r(62 + cp cos2 e )  = T/m sin x - p/r 

(B2) 
.2 r 6 + 2; i + r cp sin e cos 8 = T/m cos x sin Y 

r @ cos 0 -  2r 6 (i, sin g + 25 ti) cos 8 = T/m cos x cos Y (B3)  

m = m  - m t  
O '7 

m = constant 

t < t < t l  
0 

where T/m is the acceleration due to the thrust and x and Y are arbitrarily 
chosen control variables. Let 

v = r  (B5) 

u = r p  COS e 
w = r 9  

The constraint functions are 

fl = r V  cos 9 - u = 0 

. 
f2 = r - v = 0 

f 3 = r i - w = 0  

f4 = 
- u (v - w tan g)/r - T/m cos x cos Y = 0 

(B12) 

(E3131 

2 = + (u2 + w2)/r - T/m sin x t p/r = 0 

= 4 - (vw + u tan e)/r - T/m cos x sin Y = 0 2 
f5 

f6 
12 



The Ner-Lagrange equations corresponding t o  the  s i x  f i rs t -order  
d i f fe reh t ia l  equations described i n  equations (B8) t o  (Bl3) are 

il = - l l ( v  - w tan  e > / r  

A~ = -  A, + ( ~ q  u + A  w r 
6 )/ 

The optimality conditions a r e  

h, cos y 
J tan x = 

A4 
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